This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 21 February 2013, At: 11:30

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl16

Birefringence and Order Parameter of Some Alkyl and Alkoxycyanobiphenyl Liquid Crystals

Miss Sushmita Sen $^{\rm a}$, Pradip Brahma $^{\rm a}$, Subir. K. Roy $^{\rm a}$, D. K. Mukherjee $^{\rm a}$ & S. B. Roy $^{\rm a}$

^a Optics Department, Indian Association for the Cultivation of Science, Jadavpur, Calcutta, - 700032, India

Version of record first published: 20 Apr 2011.

To cite this article: Miss Sushmita Sen , Pradip Brahma , Subir. K. Roy , D. K. Mukherjee & S. B. Roy (1983): Birefringence and Order Parameter of Some Alkyl and Alkoxycyanobiphenyl Liquid Crystals, Molecular Crystals and Liquid Crystals, 100:3-4, 327-340

To link to this article: http://dx.doi.org/10.1080/00268948308075361

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1983, Vol. 100, pp. 327-340 0026-8941/83/1004-0327/\$18.50/0 © 1983 Gordon and Breach, Science Publishers, Inc. Printed in the United States of America

Birefringence and Order Parameter of Some Alkyl and Alkoxycyanobiphenyl Liquid Crystals

MISS SUSHMITA SEN, PRADIP BRAHMA, SUBIR. K. ROY, D. K. MUKHERJEE and S. B. ROY

Optics Department, Indian Association for the Cultivation of Science, Jadavpur, Calcutta — 700032, India.

(Received September 23, 1982; in final form June 15, 1983)

The refractive indices and densities of six liquid crystals—two alkylcyanobiphenyls, three alkoxycyanobiphenyls and one mixture of two alkylcyanobiphenyls have been reported as a function of temperature. The effective polarizabilities α_e and α_0 in the nematic phase calculated using the methods due to Neugebauer, Vuks and Saupe and Maier, are found to be appreciably different, though the order parameter S evaluated with those values of $(\alpha_e - \alpha_0)$ are in good agreement. The preference of one method over the other two is discussed.

INTRODUCTION

The importance of liquid crystals for their applications in display devices and other manifold scientific uses is now well known. The orientational order parameter, S, of a liquid crystal is an important parameter, the knowledge of which is essential for use in a specific purpose. Various methods are now being used to measure the order-parameter as has been discussed by Saupe and Maier, namely, nuclear magnetic reasonance, dielectric permittivity, diamagnetic susceptibility, refractive indices, X-ray scattering, UV and IR dichroism, etc. In this paper the order parameters of these liquid crystals have been reported from the measurements of refractive indices and densities at different temperatures in the nematic and isotropic phases. Three methods, namely, (1) Neugebauer's anisotropic internal field,²

(2) Vuks' isotropic internal field,³ and (3) Saupe and Maier's anisotropic model⁴ with a single internal field parameter, have been used to calculate the effective polarizabilities α_e and α_0 . The results have been discussed in this paper.

EXPERIMENTAL

The structural formulae and nematic-isotropic transition temperatures of six liquid crystals which were obtained from BDH, England are given below.

- 1. K_{15} : 4-Cyano-4'-*n*-Pentylbiphenyl, $C \stackrel{22.5 \text{ °C}}{\longleftarrow} N \stackrel{35 \text{ °C}}{\longleftarrow} I$
- 2. K_{21} : 4-Cyano-4'-n-Heptylbiphenyl, $C \xrightarrow{28.5 \, ^{\circ}C} N \xrightarrow{42 \, ^{\circ}C} I$
- 3. Mixture E_1 composed of components 1 and 2 in proportion of $59:41 C \xrightarrow{-2^{\circ}C} N \xrightarrow{37^{\circ}C} I$
- 4. M_{15} : 4-Cyano-4'-n-Pentyloxybiphenyl, $C \stackrel{48^{\circ}C}{\longleftrightarrow} N \stackrel{67.5^{\circ}C}{\longleftrightarrow} I$
- 5. M_{21} : 4-Cyano-4'-n-Heptyloxybiphenyl, $C^{\frac{53.5 \,^{\circ} \,^{\circ}}{1}} N^{\frac{75 \,^{\circ} \,^{\circ}}{1}}$
- 6. M_{24} : 4-Cyano-4'-n-Octyloxybiphenyl, $C \stackrel{67^{\circ}C}{\longleftarrow} N \stackrel{80^{\circ}C}{\longleftarrow} I$

The liquid crystals were used in the investigations without further purification.

The refractive indices n_e and n_0 for the extraordinary ray and ordinary ray in the nematic phase and refractive index n, in the isotropic phase at different temperatures were measured by means of an Abbe refractometer. The glass prisms of the refractometer were rubbed with a lens paper along the length of the prisms several times. A few drops of the liquid crystal were allowed to fall on the lower prism and were spread with a spatula. These operations helped to align the molecules of the liquid crystal along the prism face. The alignment was complete when the upper prism was clamped in place.

Two positions of a nicol placed over the eyepiece allow distinct separation of the dark and bright space in the eyepiece, corresponding to n_e and n_0 (in the nematic $n_e > n_0$). A second nicol placed between the light source and the lower prism makes the separation between the dark and bright space sharper. The temperature of the refractometer

was maintained constant within $\pm 0.2^{\circ}$ C by means of a thermostat. When the value of refractive index n_e for extraordinary ray lay outside the range of the refractometer $(n_e > 1.70)$, it was calculated from the relation $n^2 = \frac{1}{3}(2n_0^2 + n_e^2)$ where n is the isotropic refractive index extrapolated at the appropriate temperature.

The densities of the liquid crystals in the nematic and isotropic phases were determined by introducing a weighed sample of liquid crystal inside a glass capillary tube in a thermostat. The length of the column in the capillary was measured at different temperatures with a travelling microscope. The density was calculated after correcting for the expansion of the glass tube.

RESULTS

The values of the refractive indices of the liquid crystals in the isotropic phase n, and in the nematic phase, n_e and n_0 together with the densities of the liquid crystals at different temperatures are given in Tables I and II. The refractive index anisotropy is shown in Figures 1 and 2. The effective polarizabilities α_e and α_0 of the liquid crystals were calculated using three methods: 1) Neugebauer's method of anisotropic internal field, given by

$$n_e^2 - 1 = 4\pi N\alpha_e (1 - N\alpha_e \gamma_e)^{-1}$$
 (1)

and

$$n_0^2 - 1 = 4\pi N\alpha_0 (1 - N\alpha_0 \gamma_0)^{-1}$$
 (2)

where N is the number of molecules per c.c and γ_i 's are the internal field constants. The relevant equations for calculating the polarizabilities α_e and α_0 obtained from Eqs. (1) and (2), are

$$\frac{1}{\alpha_e} + \frac{2}{\alpha_0} = \frac{4\pi N}{3} \left[\frac{n_e^2 + 2}{n_e^2 - 1} + \frac{2(n_0^2 + 2)}{n_0^2 - 1} \right]$$
(3)

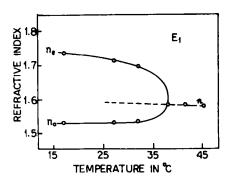
and

$$\alpha_e + 2\alpha_0 = \alpha_{\parallel} + 2\alpha_{\perp} = \frac{9}{4\pi N} \left[\frac{n^2 - 1}{n^2 + 2} \right]$$
 (4)

Downloaded by [Tomsk State University of Control Systems and Radio] at 11:30 21 February 2013

TABLEI

Values of density, refractive indices, n_e , n_0 and n of Pentylcyanobiphenyl, Heptylcyanobiphenyl, Mixture E_1


Per	entylcyanobipheny	biphenyl		He	leptylcyanobiphenyl	biphenyl			Mixture E_1	E_1	
Temp° C	Density gm/cc	<i>n</i> ₀	ne	Temp° C	Density gm/cc	n ₀	ne	Temp° C	Density gm/cc	n_0	ne
24 nem	1.0220	1.5350	1.6975	29 nem	0.9874	1.5200	1.6852	28 nem	1.0059	1.5300	1.7080
28	1.0185	1.5365	1.6891	32	0.9845	1.5217	1.6788	30	1.0037	1.5302	1.7040
30	1.0160	1.5380	1.6836	35	0.9813	1.5220	1.6740	32	1.0018	1.5321	1.6960
32	1.0144	1.5381	1.6827	38	0.9777	1.5248	1.6638	34	1.0001	1.5330	1.6880
34	1.0143	1.5450	1.6672	45 Iso	0.9680	1.5700		36	0.9964	1.5370	1.6798
37.5 Iso	1.0051	1.5860		50	0.9632	1.5665		38 Iso	0.9931	1.5804	
41	1.0024	1.5849		55	0.9589	1.5650		42	0.9886	1.5800	
43	0.9999	1.5835						45	0.9863	1.5770	

Downloaded by [Tomsk State University of Control Systems and Radio] at 11:30 21 February 2013

TABLEII

Values of density, refractive indices n_e , n_0 and n of ityloxycyanobiphenyl, Hepyloxycyanobiphenyl, Octyloxycyanobiphenyl

Pent	Pentyloxycyanobiphenyl	obipheny	_	Hept	Heptyloxycyanobipheny	nobiphen	yl	Octy	Octyloxycyanobipheny	bipheny	
	Density			•	Density				Density		
remp°C	gm/cc	0 M	,	Temp° C	gm/cc	0 14	ne	Temp° C	gm/cc	n_0	ne
9 nem	1.0455	1.5260	1.7058	55 nem	1.0127	1.5140	1.6820	69 nem	0.9956	1.5076	1.6513
	1.0426	1.5270	1.7018	56	1.0115	1.5142	1.6802	71	0.9934	1.5090	1.6465
	1.0399	1.5276	1.6968	58	1.0097	1.5150	1.6774	73	0.9914	1.5110	1.6423
	1.0370	1.5280	1.6910	9	1.0078	1.5155	1.6734	75	0.9896	1.5156	1.6332
	1.0339	1.5318	1.6807	63	1.0051	1.5161	1.6698	11	0.9876	1.5240	1.6169
	1.0297	1.5368	1.6687	<i>L</i> 9	1.0012	1.5174	1.6623	78	0.9867	1.5300	1.6050
	1.0284	1.5390	1.6601	70.5	0.9981	1.5200	1.6536	79	0.9854	1.5370	1.5910
	1.0274	1.5430	1.6521	72	9966.0	1.5245	1.6418	80	0.9842	1.5450	1.5748
	1.0262	1.5560	1.6270	73	0.9954	1.5262	1.6376	81 Iso	0.9810	1.5550	
9	1.0229	1.5802		74	0.9938	1.5400	1.6109	82	0.9796	1.5549	
0/	1.0225	1.5790		75 Iso	9066.0	1.5635		83	0.9785	1.5542	
	1.0205	1.5788		92	0.660	1.5630		85	0.9765	1.5540	
	1.0192	1.5778		11	0.9895	1.5620		87	0.9746	1.5530	
	1 01 70	1 5774		79.5	0 9869	1 5610					

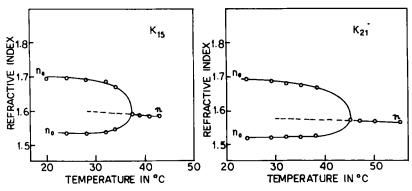
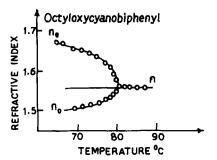


FIGURE 1 Refractive index anisotropy plots for E_1 , K_{15} , K_{21}

2) Vuks³ assumed the local field to be isotropic and his modifications of the Lorentz-Lorenz equation are:


$$\frac{n_e^2 - 1}{n^2 + 2} = \frac{4\pi N \alpha_e}{3} \tag{5}$$

and

$$\frac{n_0^2 - 1}{n^2 + 2} = \frac{4\pi N\alpha_0}{3} \tag{6}$$

where

$$\overline{n^2} = \frac{1}{3} (n_e^2 + 2n_0^2)$$

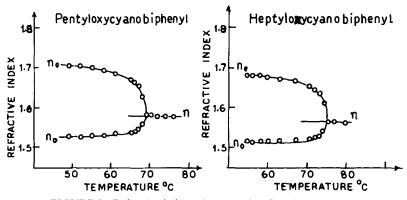


FIGURE 2 Refractive index anisotropy plots for M_{15} , M_{21} , M_{24}

3) Saupe and Maier¹ made use of anisotropic internal field but assumed a single internal field constant, 'a'; the equations are:

$$\frac{n_e^2 - 1}{n_e^2 + 2 - 2a(n_e^2 - 1)} = \frac{4\pi N}{3} \alpha_e \tag{7}$$

and

$$\frac{n_0^2 - 1}{n_0^2 + 2 + a(n_0^2 - 1)} = \frac{4\pi N}{3} \alpha_0 \tag{8}$$

The value of the internal field parameter 'a' was obtained from the

TABLE III*

Values of the effective polarizabilities α_e , α_0 for $\lambda=5890$ Å and order parameter S of Pentylcyanobiphenyl

	Neugel	oauer's M	lethod	Vu	ks' Meth	od	Saupe an	d Maier's	Method
Temp°C	α	α ₀	s	α_e	α_0	S	α,	α_0	S
24	38.67	29.62	0.62	40.10	28.90	0.64	40.77	29.07	0.67
28	38.35	29.81	0.59	39.68	29.14	0.60	40.39	29.24	0.64
30	38.13	29.98	0.56	39.41	29.33	0.57	39.99	29.43	0.61
32	37.80	30.19	0.52	39.34	29.34	0.56	39.68	29.50	0.58
34	37.26	30.40	0.47	38.32	29.87	0.48	39.31	29.76	0.54
	$\alpha_{\rm H} = 42$.58, α_ =	28.13	$\alpha_{\rm H} = 44$.60, α _ =	= 27.12	$\alpha_{ij} = 44$	$1.55, \alpha_{\perp} =$	27.15

^{*}Polarizabilities in units of 10^{-24} cm³

TABLE IV*

Values of the effective polarizabilities α_e , α_0 for $\lambda=5890$ Å and order parameter S of Heptylcyanobiphenyl

	Neugel	oauer's M	lethod	Vu	ks' Meth	od	Saupe an	d Maier's	Method
Temp ° C	α _e	α_0	S	α_e	α_0	s	α_e	α ₀	S
29	43.97	33.29	0.64	45.73	32.57	0.65	46.45	32.76	0.62
32	43.68	33.51	0.61	45.38	32.83	0.62	45.85	33.05	0.58
35	43.52	33.64	0.59	45.19	33.01	0.60	45.59	33.23	0.56
38	43.02	33.96	0.54	44.83	33.59	0.55	45.17	33.77	0.52
	$\alpha_{\parallel} = 48$	$.26, \alpha_{\perp} =$	= 31.67	$\alpha_{ } = 50$.74, α_{\perp} =	= 30.43	$\alpha_{\parallel} = 51$	$1.89, \alpha_{\perp} =$	= 29.86

^{*}Polarizabilities in units of 10⁻²⁴ cm³

TABLE V*

Values of the effective polarizabilities α_e , α_0 for $\lambda=5890$ Å and order parameter S of Mixture E_1

	Neugel	auer's M	lethod	Vu	ks' Meth	od	Saupe an	d Maier's	Method
Temp ° C	α,	α_0	s	α,	α_0	s	α_e	α_0	S
28	41.73	31.20	0.69	43.42	30.36	0.68	41.09	31.39	0.64
30	41.60	31.29	0.68	43.24	30.47	0.67	40.84	31.51	0.62
32	41.20	31.46	0.64	42.75	30.70	0.63	40.51	31.67	0.58
34	40.85	31.58	0.61	42.27	30.86	0.60	40.48	31.69	0.57
	$\alpha_{\parallel} = 44$.75, α_{\perp} =	= 29.69	$\alpha_{11} = 47$.38, α _⊥ =	= 28.22	$\alpha_0 = 44$	$4.73, \alpha_{\perp} =$	29.55

^{*}Polarizabilities in units of 10⁻²⁴ cm³

TABLE VI*

Values of the effective polarizabilities α_e , α_0 for $\lambda = 5890 \,\text{Å}$ and order parameter S of Pentyloxy cyanobiphenyl

	Neugel	auer's M	lethod	Vu	ks' Meth	od	Saupe l	Maier's N	1ethod
Temp° C	α _e	α_0	S	ae	α_0	S	α_e	α_0	S
49	40.79	30.34	0.66	42.43	29.52	0.67	43.03	29.76	0.67
52	40.67	30.48	0.64	42.26	29.68	0.65	42.62	29.97	0.64
55	40.49	30.61	0.63	42.04	29.83	0.63	42.33	30.11	0.62
58	40.28	30.72	0.60	41.76	29.98	0.61	42.13	30.22	0.60
61	39.79	31.04	0.55	41.14	30.36	0.56	41.41	30.57	0.55
65	39.23	31.45	0.49	40.43	30.85	0.49	40.33	31.11	0.46
66	38.78	31.63	0.45	39.87	31.08	0.45	40.20	31.18	0.45
67	38.33	31.89	0.41	39.32	31.39	0.41	39.65	31.45	0.41
68	36.98	32.62	0.27	37.50	32.35	0.26	38.25	32.15	0.31
	$\alpha_{ } = 44$.64, α _ =	28.96	$\alpha_{\parallel} = 47$.03, α_ =	27.76	$\alpha_{II} = 47$	$.32, \alpha_{\perp} =$	27.61

^{*}Polarizabilities in units of 10^{-24} cm³

TABLE VII*

Values of the effective polarizabilities α_e , α_0 for $\lambda=5890$ Å and order parameter S of Heptyloxycyanobiphenyl

	Neugel	oauer's M	1e thod	Vu	ks' Meth	od	Saupe an	d Maier's	Method
Temp° C	α_e	α_0	S	α _e	α_0	S	α _e	α_0	S
55	45.20	33.99	0.63	46.92	33.14	0.67	47.56	33.38	0.66
56	45.15	34.05	0.62	46.83	33.21	0.66	47.42	33.45	0.65
58	45.04	34.17	0.61	46.69	33.34	0.64	47.05	33.62	0.63
60	44.87	34.27	0.59	46.47	33.47	0.63	46.86	33.73	0.62
63	44.75	34.41	0.58	46.31	33.63	0.61	46.45	33.93	0.59
67	44.43	34.64	0.55	45.90	33.91	0.58	45.86	34.22	0.54
70.5	43.98	34.93	0.51	45.33	34.25	0.53	45.19	34.56	0.50
72	43.25	35.28	0.45	44.42	34.69	0.47	44.63	34.84	0.46
73	42.99	35.44	0.42	44.12	34.88	0.44	44.26	35.03	0.43
74	41.22	36.40	0.27	41.92	36.05	0.28	42.37	35.97	0.30
	$\alpha_{\parallel} = 49$	$.89, \alpha_{\perp} =$	= 32.21	$\alpha_{\rm II} = 51$.84, α _ =	= 31.24	$\alpha_{\rm H} = 52$	$2.23, \alpha_{\perp} =$	31.04

^{*}Polarizabilities in units of 10⁻²⁴ cm³

relation

$$\frac{n^2 - 1}{n^2 + 2} V_{\text{iso}} = \frac{1}{3} \left[\frac{n_e^2 - 1}{n_e^2 + 2 - 2a(n_e^2 - 1)} + \frac{2(n_0^2 - 1)}{n_0^2 + 2 + a(n_0^2 - 1)} \right] V_n$$
(9)

and α_e and α_0 were obtained from Eqs. (7) and (8).

TABLE VIII*

Values of the effective polarizabilities α_e , α_0 for $\lambda = 5890$ A and order parameter S of Octyloxycyanobiphenyl

	Neugel	oauer's N	fethod	Vu	ks' Meth	od	Saupe an	d Maier's	Method
Temp° C	α,	α_0	S	α,	α ₀	S	α_e	α_0	S
69	46.20	35.92	0.45	47.71	35.17	0.48	49.33	35.06	0.50
71	45.96	36.10	0.43	47.40	35.38	0.46	48.91	35.27	0.48
73	45.73	36.31	0.41	47.12	35.62	0.44	48.33	35.56	0.45
75	45.15	36.70	0.37	46.38	36.08	0.40	47.48	36.00	0.40
77	44.04	37.36	0.29	45.01	36.87	0.31	46.15	36.65	0.33
78	43.20	37.81	0.23	43.98	37.42	0.25	45.36	37.04	0.29
79	42.23	38.36	0.16	42.80	38.07	0.18	44.38	37.53	0.24
80	41.17	38.97	0.09	41.42	38.82	0.10	43.41	38.02	0.19
	$\alpha_{\rm H} = 55$.05, α _⊥ =	32.20	$\alpha_{\parallel} = 56$.90, α _⊥ =	= 31.27	$\alpha_{\parallel} = 58$	$3.62, \alpha_{\perp} =$	30.41

^{*}Polarizabilities in units of 10⁻²⁴ cm³

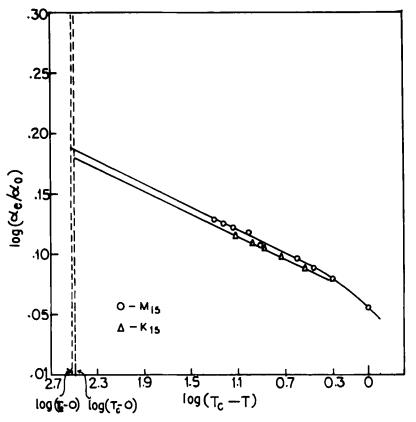


FIGURE 3 Plots of $\log(\alpha_e/\alpha_0)$ vs $\log(T_c - T)$ for M_{15} and K_{15}

The values of the polarizabilities α_e and α_0 obtained from the three methods are given in Tables (III-VIII). The principal polarizabilities α_{\parallel} and α_{\perp} , parallel and perpendicular to the long axis of the molecules being not available, the method due to Haller et al.⁴ was adopted. Graphs (Figure 3) were plotted with $\log \alpha_e/\alpha_0$ vs $\log(T_C-T)$, where T_C is the nematic-isotropic temperature. The plots which were straight lines at lower temperatures intersect the $\log \alpha_e/\alpha_0$ axis at 0°K, assumed to correspond to the $\alpha_{\parallel}/\alpha_{\perp}$ in the crystalline state. From equation (4) the values of α_{\parallel} and α_{\perp} are determined and included in Tables (III-VIII). The order parameter, S, was then calculated from the relation $S = (\alpha_e - \alpha_0)/(\alpha_{\parallel} - \alpha_{\perp})$. The values of S obtained from the different methods are given in Tables (III-VIII). The plots of S vs T/T_C are shown in Figures 4a and 4b.

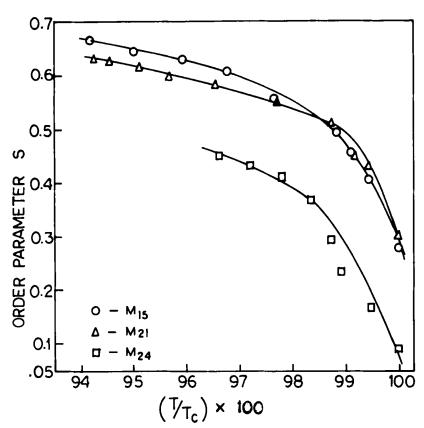


FIGURE 4(a) Plots of Order Parameter S vs T/T_c for M_{15} , M_{21} , and M_{24}



FIGURE 4(b) Plots of Order Parameter S vs T/T_c for E_1 , K_{21} , K_{15}

DISCUSSION

It can be seen from Tables (III-VIII) that the order parameter S obtained from the three methods namely—Neugebauer², Vuks³ and Saupe and Maier¹ are almost the same, though the anisotropy of the effective polarizabilities ($\Delta \alpha = \alpha_e - \alpha_0$) in the nematic phase obtained from the three methods are appreciably different. (For example, in pentyloxy cyanobiphenyl in the nematic state at 49°C the values are 10.45, 12.91 and 14.27×10^{-24} cm³ from Neugebauer, Vuks and Saupe and Maier method respectively.) The reason for similar values of the order parameter from the three methods is that the anisotropy of the principal polarizabilities $(\alpha_{\parallel} - \alpha_{\perp})$ increases in the same proportion, when one uses Vuks' or Saupe and Maier's method. It was shown by Subramhanyam et al.,5 that the polarizability values obtained from Neugebauer's relations agree well with the calculated values of isotropic polarizabilities calculated from bond polarizability data. Moreover, the assumptions of anisotropic internal field constants in liquid crystals, by Neugebauer are logical. The internal field constants γ_e and γ_0 along and perpendicular to long molecular axis are expected to be different: the former should be smaller than the latter. The values γ_e and γ_0 calculated from the Eqs. (1) and (2) given in Tables IX and X show that γ_e is always less than γ_0 . Since the effective length of the molecules and their density variation in the nematic

phase of the liquid crystals are comparable (neglecting the alkoxy group) the internal field constants are also expected to be comparable as can be seen from Tables IX and X.

It was pointed out by Haller et al.,⁴ and Subramhanyam et al.,⁵ that the value of γ_e shows a maximum at a temperature about 3° below the nematic-isotropic transition. But in the present case as the Table IX shows that γ_e values increase monotonically with increase of temperature up to the nematic-isotropic transition.

Vuks³ assumed an isotropic internal field in liquid crystalline media, but it is difficult to visualise how in a medium of anisotropic molecular distribution, as in liquid crystals, the local field would be isotropic.

Saupe and Maier¹ assumed an anisotropic molecular distribution similar to Neugebauer but used a single internal field parameter 'a'. The idea is similar to the isotropic field model of Vuks. The internal

TABLE IX Values of the internal field constants γ_e , γ_0 and 'a'

Sample	$(T_c - T)^{\circ}C$	γ_e	γ ₀	'a'	$\left(1-\frac{3\gamma_e}{4\pi}\right)$
Pentyloxy cyanobiphenyl	1	3.96	4.30	0.072	0.055
	2	3.91	4.33	0.078	0.067
	3	3.89	4.34	0.084	0.071
	4	3.85	4.36	0.076	0.080
Heptyloxycyanobiphenyl	1	3.99	4.28	0.061	0.048
	2	3.89	4.34	0.074	0.071
	3	3.88	4.35	0.079	0.074
	4.5	3.84	4.36	0.077	0.083
Octyloxycyanobiphenyl	1	4.09	4.23	0.089	0.020
, , , ,	2	4.04	4.26	0.088	0.036
	3	4.00	4.29	0.092	0.045
	4	3.94	4.31	0.094	0.060

TABLE X Values of the internal field constants γ_e , γ_0 and 'a'

Sample	$(T_c - T)$ °C	Υe	γ ₀	'a'	$\left(1-\frac{3\gamma_e}{4\pi}\right)$
Pentylcyanobiphenyl	3.5	3.88	4.35	0.10	0.07
Heptylcyanobiphenyl	7	3.96	4.61	0.03	0.11
Mixture E_1	4	3.73	4.38	0.03	0.05

field parameter was calculated using Saupe and Maier's relations. The internal field parameter 'a' can be roughly related to the γ_e values of Neugebauer by an expression 'a' = $(1-3\gamma_e/4\pi)$ as shown in Tables IX & X. In an anisotropic molecular distribution as in liquid crystals the internal field parameter cannot be the same along the long molecular axis and perpendicular to it as proposed by Saupe and Maier.

Though the determination of the order parameter of liquid crystals by Neugebauer's, ² Vuks³ and Saupe and Maier's¹ methods give nearly the same value, Neugebauer's method is to be preferred as it is theoretically sound in having internal field constants different along and perpendicular to molecular axis. Also, the principal polarizabilities obtained by it agree to the values of isotropic polarizabilities obtained from bond polarizability calculations.

It can be seen from Tables (VI-VIII) that the order parameters of pentyloxy cyanobiphenyl and heptyloxy cyanobiphenyl at the lowest temperature in the nematic phase are 0.66 and 0.63 respectively, but in the octyloxy cyanobiphenyl it is only 0.45 which is much lower than the former two liquid crystals. Though the structures of the three liquid crystals are similar, the increase in the alkyl chain length seems to reduce the order parameter rapidly.

The order parameter for pentyl and heptyl cyanobiphenyl at the lowest temperature in the nematic state are .62 and .64 respectively Tables (III-IV), but the order parameter of the mixture E_1 composed of pentyl and heptyl cyanobiphenyl (59:41) is about .70 at 28°C which is larger than the S-values of each of the components.

Acknowledgement

We thank Prof. G. S. Kastha for his interest.

References

- 1. A. Saupe and W. Maier, Z. Naturforschg, 16a, 816 (1961).
- 2. H. E. J. Neugebauer, Canad. J. Phys., 32, 1 (1954).
- 3. M. F. Vuks., Optics and Spectroscopy, 20, 361 (1966).
- I. Haller, H. A. Higgins, H. R. Lilienthal and T. R. McGuire, J. Phys. Chem., 77, 950 (1973).
- H. S. Subranhanyam, C. S. Prabha, and D. Krishnamurti, Mol. Cryst. Liq. Crys., 35, 113 (1976).